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Abstract

Turbulent convectionis an inherently non-local phenomenonand a primary condition

for a successfultreatment of the CBL (convective boundary layer) is a reliable model of

non-locality. In the dynamic equationsgoverningthe convectiveflux, the turbulent kinetic

energy, etc., non-locality is representedby the third-order moments, TOMs. Since the

simplestform, the so-called downgradient approximation (DGA), severelyunderestimates

the TOMs (up to an order of magnitude), a more physical model is needed.In 1994,an

analytical model was presentedwhich was derived directly ,rom the dynamical equations

for the TOMs. It considerably improved the DGA but was a bit cumbersometo useand,

more importantly, it was based on the quasi-normal IQN) approximation for the

fourth-order moments.

Here,wepresenta new analytic expressionfor the TOMJ which is structurally simpler

than the 1994expressionand which avoidsthe QN approximation. The resulting fit to the

LES data is superior to that of the 1994model.
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I. Introduction.

The searchfor a reliable expressionfor the third-order moments to be used in the

dynamicequationsfor the second-ordermomentssuchasthe turbulent kinetic energy, the

convectivefluxes, etc., hasa long history. For many years,peopleusedthe so-called down

gradient approximation but LES (large eddy simulations) have shown that said model

severelyunderestimatesthe TOMs (MoengandWyngaard, 1989).

Prompted by these results, Canuto et a1.(1994)undertook the task of solving directly

the dynamic equations for the TOMs thus avoiding the need for phenomenological

expressions.The key merit of the 1994model wasto exhibit the fact thal all the TOMs are

a linear combination of the gradients of all the second---ordermoment; and not only of

selectedones, as assumedin the down-gradient approximation. Fron the performance

viewpoint, the new TOMs reproducedthe LES data quite satisfactorily but the predicted

_-:2"-0and _ were not asgood as that of the other TOMs. The weakestpoint in the 1994

modelwas the useof the QN (quasi-normal) approximation for the fourti_--ordermoments.

Both theselimitations motivated us to searchfor new expressionsfor the TOMs which are

simpler and with a better physical content.

II. The new physical ingredient of the third--order moments

Therearesix TOMs to beconsidered:

w--a,_-'2_,w--'2-0,w-_,-03, q-'2-0 (1)

Here, u,v,w and 0 are the fluctuating velocity and temperature fields and q2=u2+v2+w2.

Since the TOMs in (1) have different dimensions, we multiply the last four by appropriate

variables so that all the TOMs have dimensions of a velocity cubed. Thus, we introduce the

new variables x's which have the same dimensions:

xl = garvW---_ ' x 2 _ (garv)2W----_ (2a)

x - (gO_rv)3_, x - gO_rv_-0 (2b)
3 4

x -w-qZ z---w-a (2c)
5
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Here, a is the volume expansion coefficient, g is the local gravity and r v a time scale that

will be discussed below. The original dynamic equations for the TOM given in (1) can be

found in Canuto (1992), Eqs.(37a),(38a),(39a) and (40a). These equations entail fourth

order moments which can be written in general as:

= (a--_ c--c]+ a'c b---c]+ _ b-c)f (3a)

When the function f is taken to be unity, Eq.(3a) corresponds to the quasi-normal (QN)

approximation. "Jnder the QN approximation, the time scale r v introduced before can only

be identified with the dynamic time scale of turbulence r=2K/c (K and e are the turbulent

kinetic energy and its rate of dissipation).

With rv=r , the explicit form of the TOMs was presented in Canuto et a1.(7994).

Even though the comparison with LES data was overall satisfactory,, the predicted w-_-) and

(figs.10-11 of Canuto et al., 1994) were not as good as that of the other TOMs. In

addition, the expressions of the TOMs were rather cumbersome to use due to the fully

explicit form of the determinant obtained when solving the algebraic set of equations for

the TOMs.

For these reasons, we felt motivated to search for new expressions for the TOMs that

are both simpler to handle and possess a better physical content. Zilitinkevich et al. (1999)

tried to do so but their solution is not practical since it does not provide an expression for

_a which must be derived form outside, say from an LES.

To improve the 1994 model, ".re were guided by the fact that with f=l, the TOM can

become arbitrarily large while in reality they have finite values, e.g., the small value of the

skewness. Thus, reducing the TOM given by the f=l case is a way to avoid unphysical

results. How to directly relate this "damping effect" to a f#l is not a matter that can be

carried out analytically, rather, we have used f in (3a) to formally indicate the physical

motivation of our new approach. In the most successful heuristic model used to cut down

the growth of the TOM, the EDQNM model (Lesieur, 1992), the damping is represented by

an additional time scale which one must choose on physical grounds. Here, we suggest to
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take:

rv = r[l+A N2r_]-1, N2=-gao_/_, r =2K/_
0

We shall further take:

A =0.04 if N2>0, A =0 if N2<0
0 0

The previous model (Canuto et al., 1994) corresponds to f=l and/or to A =0.
0

(3b)

(3c)

III. The new expression for t',e third-order moments

The new analytic expressions for the TOMs are quite simple:

x =Xz-X
1 0 1

x =Yz-Y
2 0 1

x =Zx -Z
3 0 2 1

x =Wx +clx +W
4 0 5 2 1

x =flz-fl
5 0 1

z=(g_-l.2X -_f5)(c-l.2X + flo )-1
1 1 0

where the functions X, Y, Z, W and fl are defined as:

X
1

X = 721_2(1-731_2)[1-(7+73)1_2]-1
0

= ['_ofo + 71f1+ 72(1-73t_2)f2][1-(7 t _3)N2] -1

Y = 272i_2(1-731_2)-1Xo
0

YI= 2 72(1-731_2)-l(N2Xl+ 7o71-1fo ÷ fl )

z = 2o
Z = 3(c-2)-1f

1 0

fl=wX+wY
0 0 0 1 0

ft=wX+wY +w
1 0 I 1 1 2

W =½ R 2, W=-c-lf
0 C I 3

The auxiliary functions w's are:

1 - _2_-1 (2c)-lw0 ' W2= Wlf3 ÷ 45_w0f4wo= 74( -v 5 _ , wl=

Finally, the "_'s are constants which depend on the only adjustable parameter c:

(4a)

(4b)

(4c)

(5a)

(5b)

(5c)

(5d)

(se)

(6)



'Y0 = 0"52c-2(c-2)-1' 71= 0"87c-2 72=0'5c-1

73- 0.60c-1(c-2) -1

74 = 2'4(3c+5)1' ")'5= 0"6c-X(3c+5)-' (7)

Based on previous work, the suggested value is c=7 but small variations are allowed. The

second order moments enter through the functions f which are defined as follows:
0,-.,5

\3 4 • Oq'02
f = (gc_) 7-vJ_

0

i 'w 3-z )

f = goO.2vj Or7 _z2 _ + 2g °_Tv2w-'2

f = go_7_v2tw--20J OK3 _ 7_ + J 7_ -)

f = _ ,,-_,r0v7 OK
4 "v" +

f = Tvs (s)

All the functions f's have dimensions of velocity cubed. Finally:

J=w--0, R 2 =-r2N 2 (9)
V

IV. Test of the new TOM vs LES data.

In Fig.1 we compare the new TOMs given by Eqs.(2) and (4) vs. LES data. Rather

than solving the CBL dynamic equations as it was done in the 1994 paper, here we

employed LES data to compute the second-order moments Eq.(8), r=2K/c and N2(z).

The better agreement with LES data with respect to the 1994 model, especially in

Figs 1c-d, is also partly due to the simpler analytical form of the TOM which has allowed

us to test slight variations around the c=7 value. Due to its rather rigid nature, the 1994

model did not allow the same freedom. However, the key reason for the better performance

of the new model is of physical origin: we have abandoned the quasi-normal approximation

for the fourth-order moments that we employed in the 1994 model. This means that we

have searched for a way to cut down an otherwise unphysical growth of the TOM by



adopting an EDQNM-like procedure.Regrettably, at present we dont have an a priori

derivation for (3b,c) which must thus beconsideredanheuristic suggestion.

V. Conclusions.

The results presentedin Fig.1 satisfy the two requirementsset out at the beginning,

the expressions for the TOMs are simpler than those of the 1994 model and their physical

content is better. As a result, the large values of w-__ and _ that characterized the 1994

model are no longer present and an overall better fit is obtained.
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Figure Caption

Fig.l. The third-order momentsEq.(2) vs. z/h. The LES resultsof Zilitinkevich et al.

(1999) are plotted as dotted lines (the LES data did not contain the _-_ value); the

down-gradient approximation (DGA) model is plotted as dashed lines while the present

model results are plotted as solid lines. As well known, the DGA severelyunderestimates

the third-order moments. All TOMs are normalized with Deardorff convective scales

w,(=2ms -1)and 6,(=0.12K). The valueof the PBL depth h is 10:0m.
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